( Remarks on
Isomorphisms in Typed Lambda Calculi with Empty and Sum Types
R. Di Cosmo. Deciding type isomorphisms in a type
asJournal of Functional Programming signment framework. , 3(3):485-525,
1993. (Special Issue on ML). ( -calculus to inIsomorphisms of types:
from
R. Di Cosmo. formation retrieval and language
design . Birkhauser, 1995.
R. Di Cosmo. Second order isomorphic types. A proof
( -calculus with surjective theoretic study on second order Information and
Computation pairing and terminal object. , pages 176-201, 1995.
J. Doner and A. Tarski. An extended arithmetic of
ordinal Fundamenta Mathematica numbers. , 65:95-127, 1969.
K. Dosen and Z. Petric. Isomorphic objects in
symmetMathematical Structures in ric monoidal closed categories. Computer
Science , 7(6):639-662, 1997.
M. Fiore, R. Di Cosmo, and V. Balat. Extensional
normalisation for typed lambda calculus with sums via Grothendieck logical
relations. Manuscript, 2002.
R. Gurevicˇ. Equational theory of positive
numbers with exProceedings of the American Mathematical ponentiation.
Society , 94(1):135-141, 1985.
R. Gurevicˇ. Equational theory of positive
numbers with exAnnals of Pure ponentiation is not finitely axiomatizable.
and Applied Logic , 49:1-30, 1990.
Y. Lafont. Logiques, categories et machines. The`se
de doctorat d'etat, Universite Paris 7, 1987. Introduction to higher order
cate
J. Lambek and P. Scott. gorical logic Cambridge
studies in advanced , volume 7 of mathematics . Cambridge University Press,
1986.
C. F. Martin. Axiomatic bases for equational
theories of Notices of the Am. Math. Soc. natural numbers. , 19(7):778,
1972.
P. Narendran, F. Pfenning, and R. Statman. On the
unificaProceedings tion problem for cartesian closed categories. In ((
Symposium on Logic in Computer Science (LICS) of the 8 , pages 57-63,
Montreal, Canada, 1993. IEEE Computer Society Press.
M. Rittri. Retrieving library identifiers by
equational match(( Int. Conf. on Automated Deduction 10 , voling of types.
In Lecture Notes in Computer Science ume 449 of . SpringerVerlag, 1990.
Searching program libraries by type and proving
M. Rittri. compiler correctness by bisimulation .
PhD thesis, University of Go¨teborg, Go¨teborg, Sweden,
1990.
M. Rittri. Using types as search keys in function
libraries. Journal of Functional Programming , 1(1):71-89,
1991.
C. Runciman and I. Toyn. Retrieving re-usable
software Journal of Functional components by polymorphic type. Programming
, 1(2):191-211, 1991.
S. H. Schanuel. Objective number theory and the
retract Journal of Pure and Applied Algebra chain condition. , 154:295-298,
2000.
S. V. Soloviev. The category of finite sets and
carteJournal of Soviet Mathematics sian closed categories. ,
22(3):1387-1400, 1983.
S. V. Soloviev. A complete axiom system for
isomorphism Logic of types in closed categories. In A. Voronkov, editor,
Programming and Automated Reasoning, 4th International Conference Lecture
Notes in Artificial Intel, volume 698 of ligence (subseries of LNCS) ,
pages 360-371, St. Petersburg, Russia, 1993. Springer-Verlag. [32] A. J.
Wilkie. On exponentiation - A solution to Tarski's high school algebra
problem. Math. Inst. Oxford University (preprint), 1981.